Zyxin is a critical regulator of the apoptotic HIPK2-p53 signaling axis.
نویسندگان
چکیده
HIPK2 activates the apoptotic arm of the DNA damage response by phosphorylating tumor suppressor p53 at serine 46. Unstressed cells keep HIPK2 levels low through targeted polyubiquitination and subsequent proteasomal degradation. Here we identify the LIM domain protein Zyxin as a novel regulator of the HIPK2-p53 signaling axis in response to DNA damage. Remarkably, depletion of endogenous Zyxin, which colocalizes with HIPK2 at the cytoskeleton and in the cell nucleus, stimulates proteasome-dependent HIPK2 degradation. In contrast, ectopic expression of Zyxin stabilizes HIPK2, even upon enforced expression of its ubiquitin ligase Siah-1. Consistently, Zyxin physically interacts with Siah-1, and knock-down of Siah-1 rescues HIPK2 expression in Zyxin-depleted cancer cells. Mechanistically, our data suggest that Zyxin regulates Siah-1 activity through interference with Siah-1 dimerization. Furthermore, we show that endogenous Zyxin coaccumulates with HIPK2 in response to DNA damage in cancer cells, and that depletion of endogenous Zyxin results in reduced HIPK2 protein levels and compromises DNA damage-induced p53 Ser46 phosphorylation and caspase activation. These findings suggest an unforeseen role for Zyxin in DNA damage-induced cell fate control through modulating the HIPK2-p53 signaling axis.
منابع مشابه
Tumor and Stem Cell Biology Zyxin Is a Critical Regulator of the Apoptotic HIPK2-p53 Signaling Axis
HIPK2 activates the apoptotic arm of the DNA damage response by phosphorylating tumor suppressor p53 at serine 46. Unstressed cells keep HIPK2 levels low through targeted polyubiquitination and subsequent proteasomal degradation. Here we identify the LIM domain protein Zyxin as a novel regulator of the HIPK2-p53 signaling axis in response to DNA damage. Remarkably, depletion of endogenous Zyxin...
متن کاملTargeting Hypoxia in Cancer Cells by Restoring Homeodomain Interacting Protein-Kinase 2 and p53 Activity and Suppressing HIF-1α
BACKGROUND The tumor suppressor homeodomain-interacting protein kinase-2 (HIPK2) by phosphorylating serine 46 (Ser46) is a crucial regulator of p53 apoptotic function. HIPK2 is also a transcriptional co-repressor of hypoxia-inducible factor-1alpha (HIF-1alpha) restraining tumor angiogenesis and chemoresistance. HIPK2 can be deregulated in tumors by several mechanisms including hypoxia. Here, we...
متن کاملHomeodomain-Interacting Protein Kinase-2: A Critical Regulator of the DNA Damage Response and the Epigenome
Homeodomain-interacting protein kinase 2 (HIPK2) is a serine/threonine kinase that phosphorylates and activates the apoptotic program through interaction with diverse downstream targets including tumor suppressor p53. HIPK2 is activated by genotoxic stimuli and modulates cell fate following DNA damage. The DNA damage response (DDR) is triggered by DNA lesions or chromatin alterations. The DDR r...
متن کاملRetraction: High-mobility group A1 inhibits p53 by cytoplasmic relocalization of its proapoptotic activator HIPK2.
High-mobility group A1 (HMGA1) overexpression and gene rearrangement are frequent events in human cancer, but the molecular basis of HMGA1 oncogenic activity remains unclear. Here we describe a mechanism through which HMGA1 inhibits p53-mediated apoptosis by counteracting the p53 proapoptotic activator homeodomain-interacting protein kinase 2 (HIPK2). We found that HMGA1 overexpression promoted...
متن کاملCutaneous HPV23 E6 Prevents p53 Phosphorylation through Interaction with HIPK2
Ultraviolet irradiation (UV) is the major risk factor for the development of skin cancer. Moreover, increasing evidence suggests cutaneotropic human papillomaviruses (HPV) from the beta genus to play a causal role as a co-factor in the development of cutaneous squamous cell carcinoma. Homeodomain-interacting protein kinase 2 (HIPK2) operates as a potential suppressor in skin tumorigenesis and i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 71 6 شماره
صفحات -
تاریخ انتشار 2011